If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2+4x=0
a = 17; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·17·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*17}=\frac{-8}{34} =-4/17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*17}=\frac{0}{34} =0 $
| 20(20)=20h | | x+1/2+x+3/9=1 | | 61.9(x+47.8)=97.4x | | -2x18=6(1-2x)+4x | | 3x-5x(x-3)=-8+3x-17 | | 4x^2-12x^2=0 | | 1/2x+2x=40 | | 101.4(x-16.4)=105.4 | | 4x-22=2+x | | 3x-2(4-5x)=2(11-x | | 94(x-19)=46x | | 11n=8n-3(5-2n) | | 3.92(6.1-x)=7.3 | | 4(3x2)=2x-4 | | -7(y+3)=3y+29 | | 4.2(x+9.6x)=105.5 | | 28(19x-20)=192 | | -3(2x-2)=-4(x+2) | | 14(x+11)=121 | | x-30=4x-84 | | 2(x+3)^2-4=14 | | 5(n)-9=16 | | 2=5/2q+2q/q+1 | | -2x=x+2(3) | | (2.2)x=16 | | 22+4x=12x+126 | | (2t+7)(t-4)=0 | | 91/4x=6 | | 3/5-7/10=x/7 | | 3(3b-4)=5(b+6) | | 1/2(x-24)=6+5x | | 5(3-x)+1=4(x-2)-3 |